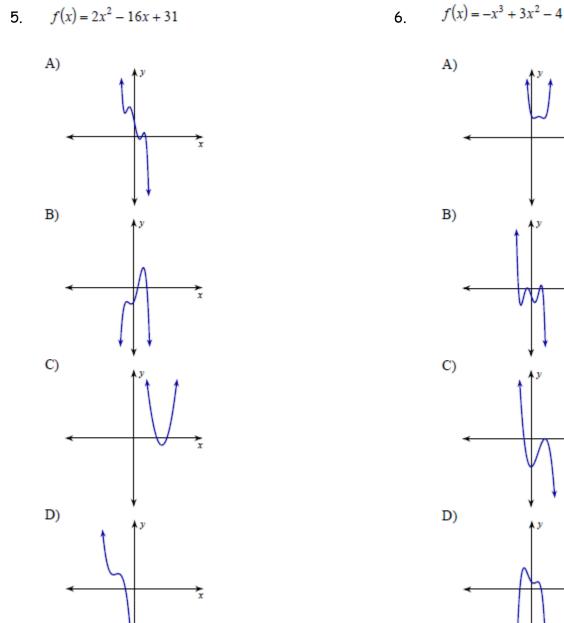
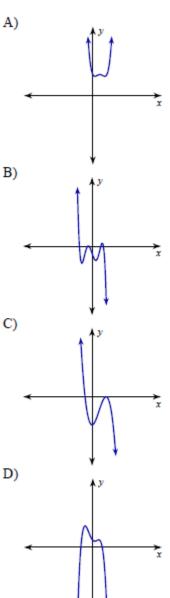
Algebra 2

Name: _____

Semester 1 Final (Unit 4) Review B


Target 4A: End Behavior of Polynomials


1.
$$f(x) = x^4 - 2x^2 + 2$$

2. $f(x) = -3x^7 + 2x^2 - 1$

4. $f(x) = x^3 - 3x^2 + 2$ 3. $f(x) = -x^4 + 4x^3 - 3x^2 - 5x + 3$

Target 4B: Graph Polynomial Functions

Which graph shows the general sketch of each function?

Date: _____ Period: _____

<u>Target 4C: Addition, Subtraction, and Multiplication of Polynomials</u> Simplify each expression

7. $(2a^3 + 3a^2 + 7a) + (a^4 + a^2 - 2a)$ 8. $(4x^2 + 13x + 9) + (12x^2 + x + 6)$

9.
$$(3x^2 - 2x + 9) - (x^2 - x + 7)$$

10. $(3c^2 - 8c + 4) - (7 + c^3 - 8c)$

11. (6p+8)(5p-8) **12.** $(4p-1)^2$

13.
$$(7r^2 - 6r - 6)(2r - 4)$$
 14. $(2n + 6)^3$

Target 4D: Division of Polynomials

15. $(a^4 - 5a^3 - 13a^2 + 53a + 60) \div (a + 1)$ 16. $(2m^4 - 5m^3 - 10m + 8) \div (m - 3)$

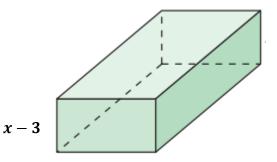
17. Is (b + 1) a factor of $(2b^3 + b^2 - 2b + 3)$? Explain how you know.

18. What is the value of k such that $(n^3 + 2n^2 + kn + 12) \div (n + 4)$ has a remainder of 4? (Hint: you may have to work backwards at some point or try "guess and check", if all else fails)

Target 4E: Find zeros of polynomials

19. If a factor in the following polynomial is (x - 2), use division to find the other factors and list the zeros.

$$f(x) = (2x^3 - 3x^2 - 3x + 2)$$


Factors: _____

Solutions: _____

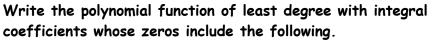
20. The volume (V) of any rectangular prism can be found using the formula "V = Bh", where B is the base area and h is the height of the prism.

For this rectangular prism, its volume can be expressed using the polynomial: $V = 2x^3 + 7x^2 - 18x - 63$

What is the expression for the length of the base? What is the expression for the width of the base?

Length of the base: _____

Width of the base: _____

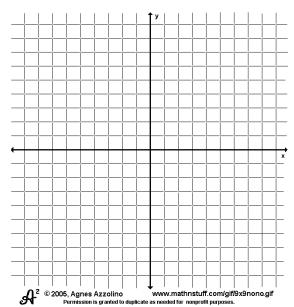

Target 4F: Fundamental Theorem of Algebra and Finding Solutions

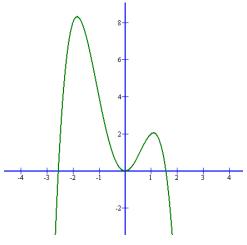
Given a polynomial, identify the number of solutions or zeros.

- $0 = x^4 + 2x^3 4x^2 + x$
- Total number of solutions: _____
- **23**. $g(y) = 4y^5 3y^3 + 2y^7 2$

Total number of zeros: _____

- 25. For $f(x) = -2(x+3)^2 (x-1)^3$,
 - a) Determine end behavior
 - b) zeros of the function
 - c) y-intercept
 - d) Sketch the general shape of the polynomial
- 26. The degree of the graph at the right is 4.
 - a) How many real roots?
 - b) How many imaginary roots?


27. 6 and 2i


 $22. \qquad -3x^{10} + 5x^9 - 2x^5 + 2x = 0$

Total number of solutions: _____

24.
$$h(x) = 5x^4 + 7x^8 - x^{12}$$

Total number of zeros: _____

28. 4, -1, and -3i